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Abstract  

A method for calculating the properties of structures 
obtained by projection is developed and applied to 
a three-dimensional generalization of the Penrose 
tiling. The diffraction pattern is shown in general to 
consist of a dense set of delta-function peaks. For the 
Penrose model the pattern in addition has the sym- 
metry of the icosahedron. 

1. Introduction 

A global construction of the remarkable nonperiodic 
tiling of the plane discovered by Penrose (1974) was 
first given by de Bruijn (1981). He also showed that 
the construction could be interpreted as the projection 
of a five-dimensional lattice structure into a two- 
dimensional subspace. This method was later used 
by Kramer & Ned (1984) to construct a three- 
dimensional generalization of the Penrose tiling by 
projecting from twelve dimensions. The form of the 
projection in this case was determined by the require- 
ment that the projected basis vectors constitute a 
representation of the icosahedral group. We thus refer 
to the three-dimensional Penrose pattern as an 
icosahedral quasilattice. The term 'quasilattice' was 
first used by Mackay (1981) in perhaps the earliest 
speculations about incorporating Penrose patterns 
into crystallography. This term also seems appropri- 
ate in view of the recently proposed classification 
scheme of Levine & Steinhardt (1984) based on 
quasiperiodicity. 

The aim of the present paper is to give a calculation 
of the diffraction pattern of the icosahedral quasilat- 
tice using the method of projection. We also hope to 
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Fig. 1. The construction of the set ~(xo). 
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show that the techniques used lend themselves 
naturally to the calculation of a number of other 
properties of projected structures. Of these we include 
a calculation of the density and the derivation of a 
formula giving the frequency of occurrence of subpat- 
terns. In the following section we treat the more easily 
visualized case of a one-dimensional structure 
obtained by projecting from two dimensions. The 
tools developed there are readily generalized in § 3 
where we present analogous calculations for the 
icosahedral quasilattice. 

2. A one-dimens ional  e x a m p l e  

The discussion in this section will involve construc- 
tions confined to the Euclidean plane. We will let 7/2 
denote the square lattice considered as the set of 
points n = ( n  1, n 2) having integer Cartesian coor- 
dinates. Rotated by an angle a with respect to the 
former coordinate system, we introduce another 
orthogonal coordinate system with axes labeled Xll 
and X± (see Fig. 1). The only thing we require about 
o~ is that tan a is irrational. The XII axis will later 
assume the role of the 'physical' subspace into which 
a subset of 7/2 will be projected to give the desired 
one-dimensional structure. 

The selection of a subset of the lattice points is 
accomplished by first constructing a line l(xo) parallel 
to the XII axis and intersecting the X± axis at the 
point Xo¢ X± (see Fig. 1). We then consider the 
elementary square cell of 2~2: 

C(n)  = {(x l, x2)lx I E[/11,/11 ~ 1) and x 2 ¢ [/12, n2+ 1)}. 

The subset 5e(Xo) c 7/2 is now given by the definition 

b~(Xo)={n~7/2ll(xo)c~C(n)~O }. (1) 

These are just the lower left-hand vertices of all those 
square cells cut by the line l(xo) (open circles in 
Fig. 1). 

The last step in the construction involves projecting 
the set 5e(x0) into XII. If e I and e 2 are  the standard 
basis vectors of 7/2 , then upon projection 

e i = Pil(e') + P±(e i )  = e l l+  ei,i i = 1, 2, 

where Ptl and Pl  denote projection operators. A 
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matrix representing PU is given by 

eli = (Pll)qe j 

= (  cos2a cos a s in  ot)iJej" 
\ s in  a cos a sin 2 c~ 

(2) 

The corresponding formula for P± can be obtained 
using P~_ = 1 - PII. 

The projected one-dimensional structure oCPil(X0) 
can now be expressed as the set 

6ell(xo) : {,~1 nieiil(n 1, n2) ~ 5e(x0)}. 

Using the fact that the definition of I(xo) is given by 

} = x e±=xo , 
i = 1  

a compact definition of ~ll(X0) takes the form 

Y.l (xo)={~int(x ' )e i l[~ ' '  } x e±=xo , 
i = 1  i----1 

where int (x) denotes the greatest integer less than or 
equal to x. 

It is quite easy to show that oCPil(xo) represents the 
set of endpoints of a filling of the line Xll by a sequence 
of line segments of two types, one of length leVI = 
[cos aJ and one of length le~l-lsin ~l (see Fig. 2). 
Owing to the irrationality of the slope of the line 
l(xo), the ordering of the two line segments is nonperi- 
odic. Had we imposed further that tan a was a quad- 
ratic irrational, then the sequence obtained would 
have possessed additional properties associated with 
quasiperiodicity (Levine & Steinhardt, 1984). 
Although many of the interesting properties of Pen- 
rose patterns appear to be closely related to 
quasiperiodicity, our subsequent calculations will not 
rely on these properties. 

We will now discuss the sense in which the infinite 
structure Oq'll(XO ) depends on the choice of the par- 
ameter Xo. Firstly, we disregard the singular case when 
l(xo) passes exactly through a lattice point. Also, it 
will be more convenient to describe l in terms of its 
intersection with one of the x 1= n grid lines of the 
unrotated coordinate system. If this intersection 
occurs at (x 1, x 2) = (n, y.),  we denote the line l(y.). 
It is clear that adding an integer to y. only has the 
effect of shifting the projected structure S/~II by a finite 
amount. Now, if the fractional part of y. is replaced 
by the fractional part of y.+,. for any integer m, then 
we again only shift ,9°11 by a finite amount. The formula 
for the sequence of these fractional parts is given by 

Y.+m = (tan a ) m  + y. mod 1. 

1 2 4 2 1 1 2 1 
---C: ~C ~0 0 0 0 0 0 0 , ~  

Fig. 2. The filling of XII with two line segments. 

Provided that tan a is irrational, there is a well known 
theorem [see, for example, Kuipers & Niederreiter 
(1974)] that states that the distribution of values Y,+m 
for m - - 1 , . . . ,  M becomes uniformly dense in the 
interval [0, 1] as M + o o .  Consequently, given the 
physical assumption of a finite precision in the value 
of y, (which leaves a certain small fraction of SPll 
ambiguous), all fractional values generate structures 
that are simply related by shifts. Since Xo is linearly 
related to y,, the sense in which the infinite structure 
5ell(x0) is independent of Xo should now be clear. 
Since we confine ourselves to properties of infinite 
structures, the parameter Xo will be dropped when 
not explicitly needed. 

One justification of the projection method is pro- 
vided by the natural appearance in many calculations 
of objects projected into the orthogonal subspace X±. 
Before proceeding to the diffraction pattern we will 
consider two such examples. We first calculate the 
density of points in ~ell and then give a method for 
obtaining the frequency of occurrence of specific 
subpattems within 5ell. 

In the rotated coordinate system we consider a 
large rectangular region ~ having sides of length LII 
and L± in the XII and X± directions respectively. For 
each lattice point n ~ ~ we define the function 

0.(Xo) = {10 ifl(xo)c~C(n)~O 
otherwise. 

The value of the integral 

0.(x0) dx0 = v 
--CO 

is easily seen to be just the length, or measure/z,  of 
the line segment obtained by projecting a unit square 
cell into X j_ (see Fig. 3)" 

v = ~ { P A C ( n ) ] }  = Icos ~1 +ls in  ~1. (3) 

Up to boundary corrections proportional to the 

/(Xo) 

2 
e± XU 

Fig. 3. The projection of a square cell into X_L. 
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perimeter L=2(LII+L±) , the area of ~ can be ex- 
pressed as the number of enclosed square cells: 

LIIL±= E I + O ( L )  (4) 

L± 

= E ~ O.(xo) d x o / v + O ( L )  
n e ~  0 

L± 

= ~ (LIiP) dXo/V+O(L)  (5) 
0 

= ( p / v ) L .  LII + O(L). (6) 

In (5) we interchanged the order of summation and 
integration and introduced the density 

P = (LII)-' E O.(xo). (7) 
a ~  

Independent of the above remarks concerning the 
parameter Xo, it can easily be seen that the limit LII --> oo 
of (7) does not depend on Xo. Comparing (4) with 
(6) we see that 

p = v=lcos  a l+ls in  al. 

Before continuing to the next calculation we will 
consider an alternative definition of the set ba(x0). 
The condition 

l(xo) n C(n) ~ 0 (8) 

in (1) is equivalent to the condition on the lattice 
point n that its projection P±(n) lies within the projec- 
tion of a particular square cell determined by Xo. 
Formally, (8) is equivalent to the statement 

Xoe P_L[ C(n)], 

which, upon translation implies 

-P±(n) e P±[ C(n)]- P±(n)- Xo 

o r  

Pj_(n) e P±[ -C(o) ]  + Xo-  C±(xo) 

after an inversion and using properties of P±. We 
thus have the alternative definition 

ba(Xo) = {n e 7/2lp±(n) e C~(xo)}. (9) 

We will now show that in fact C±(xo) is filled 
uniformly by the projections P.[ba(Xo)]. For con- 
venience, we consider instead of C±(xo) the interval 

Ik = {xe~lx e [k, k + 1)}= X± 

for some integer k. Since C±(xo) is contained in the 
union of such intervals with different k, it is enough 
to show that each of them is filled uniformly. The set 
of lattice points n with projections 

1 1 2 2 n ±=n  e±Wn e±EIk 

is given by the sequence 

n ~ = ( m ,  n2(m)), m = - M , . . . , M ,  

2 where n2(m) is the unique integer multiple of eL that 
places n± into the desired interval Ik. The sequence 
of projections 

P±(n, , )=(k+x, , , )e~ 

is given by the formula 

x~ ( e ; .  2 2 = e . / e ± . e ~ ) m = - ( t a n a ) m  m o d l .  

By the same theorem invoked earlier, the values xm 
will be distributed uniformly in the limit M-> ~ pro- 
vided of course that tan a is irrational. 

If nil E ball is the projection of some lattice point 
n ~ ba, then the arrangement of points n ll e ball in the 
vicinity of nil is completely determined by the location 
of n± = P±(n) ~ ba± within C±. This can be understood 
if we begin at n and consider the neighboring lattice 
points n = n + k .  To see whether nil=nll-q-kll also 

I belongs t o  ball we simply check to see if n i = n± + k± 
lies within C±. The allowed increments kll are there- 
fore completely determined by the location of the 
starting point n± in C±. 

We will define a 'subpattern' as the projection 
Pil(ff{) of a finite set of lattice vectors 

i f{  = { 0 ,  k l ,  . . . , kin} c Z 2, 

where k l , . . . ,  k,, are nonzero and distinct. A subpat- 
tern PII(Yt') is 'rooted' at nil if nlI+PII(X ) ~ ball. The 
question of whether a point nil = Pit(n) ~ Sell occupies 
the 'root' position of a subpattern Pit(:~) can be 
answered simply by checking whether 

P±(n+ ~ ) c  C±. (10) 

The set of all lattice points n e ba such that (10) holds 
will be denoted .N'~c. After a series of translations, (10) 
can be rewritten in the equivalent form 

P±(n)e ['-1 [ C ± - P ± ( k ) ] - C ± ( : K ) .  
keS~r 

We are now ready to compute the probability that 
a point nil drawn at random from 9°11 occupies the 
root of a subpattern PII(~). Using the above notation, 
we are interested in knowing the conditional proba- 
bility 

p(Y{) = prob (n e .N'~cln e 9°) 

=prob (n. c C±(:~) n. c Y.). 

According to our earlier discussion, the sample points 
nx e Sex are distributed uniformly in the interval C±. 
This implies that the probability measure is propor- 
tional to the usual 'volume' measure/z, which in this 
case is just the length: 

p(Y{) = tx[C.j_(:K)]/Ix(C±). (11) 

We conclude this discussion of probabilities with 
a simple application of formula (11). For the range 
of angles 0 < a < 7r/4, the larger of the two intervals 
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that fills Xll has length le~[ = cos a. We now wish to 
know the probability that a point drawn at random 
from Sell is the common endpoint of two adjacent 
large intervals. In this case the subpattern is defined 
by ~'f = {o, e ~, - e  ~} and Cx(Srf) is given by the intersec- 
tion of three intervals: 

Ca-(~) = Ca- n ( C ± -  e~) n ( C.  + el).  

Using the result (3) for Ca-, we have that 

p(Srf) = (cos a - s i n  a ) / (cos  a + s i n  a).  

In calculating the diffraction pattern we consider 
the simple case where identical atoms occupy all the 
projected points nil E 6ell. It will be advantageous to 
view the argument of the structure factor S(gll) as the 
projection of a two-dimensional reciprocal-lattice 
vector g ~ (7]2) *. Here we use the convention 

1 = e ig 'a= eiglrnlle ig-~'%- (12) 

for all n~ Z 2 and g~ (7/2) *. In using the Euclidean 
inner product in (12) we have implicitly chosen to 
express the elements of (7/2), in terms of the 
same basis used for real space. Explicit formulas are 
given by 

2 

g = 2rr ~_, mie i 
i = 1  

2 2 

m ell , g_L=21r ~ m ie.,i (13) 
i = 1  i = 1  

where (m!, m 2) ~ 7/2. Identity (12) forms the basis of 
our calculation of the structure factor (for N atoms): 

S(gll) = E e iglr'Jl= E e -ig-~''" 
nil ~ ,.,cPII n a, ~ . ~  a, 

~-[N/Iz(C±)]  J e-ig~-Xa,dx± x(phase) .  
Ca.  

The last step follows in the limit N-~ oo since, as 
discussed above, the projections n± uniformly fill up 
the interval Ca. Neglecting the phase and using v = 
/z(Ca-) given by (3), we have 

S(gll) = N(sin z) /z ,  z=½lg.lv. 

The relation between gll and g± is given by (13). The 
incommensurate nature of the projection determines 
a unique g given gll, which in turn determines ga- 
uniquely. Since the scattering is proportional to the 
number of atoms, we obtain a set of delta-function 
peaks. In spite of the fact that these peaks form a 
dense set, each individual peak is 'isolated' in the 
sense that one can always find a suitably small neigh- 
borhood of the peak position such that all the other 
peaks in that neighborhood have intensities that are 
arbitrarily small. 

3. T h e  i c o s a h e d r a l  q u a s i l a t t i c e  

We have tried to present the discussion of the 
one-dimensional example in such a way that 
generalization to higher-dimensional constructions is 
straightforward. Here we focus on the icosahedral 
quasilattice, which is obtained by projecting a subset 
of the six-dimensional lattice 7~ 6 into a special three- 
dimensional hyperplane XII. The orientation of Xll 
relative to the lattice is determined by the requirement 
that the projected basis vectors e~ , . . . ,  e~ coincide 
with the six vertex axes of the icosahedron. We will 
see that this choice leads to a diffraction pattern 
having icosahedral symmetry. 

A useful way of specifying the orientation of the 
space Xll is in terms of the representation (2) of the 
projection operator: 

5 x/2 1 1 1 1 1 \ij 

1 5 1 / 2 1 _ 1 _  1 i )  
(pii) ij = 20_1/2 1 1 51/2 1 -1  - 

1 - 1  1 5 I/2 1 - " 

1 - 1  - 1  1 51/2 

1 1 - 1  - 1  1 51/2/ 

Both this matrix and the matrix representing P± = 
1-PII have rank three and satisfy the required 
properties 

= = = o .  

The two sets of projected basis vectors have the same 
norms, 

leVI = leVI-  2 -1/2, i =  1 , . . . ,  6, 

but different pairwise inner products: 

cos (el~, e~) = -cos  (e~, eJ[), i # j .  (14) 

A calculation of all fifteen combinations 

cos (e~, ell ) = 5 -1/2, i =  2 , . . . ,  6 

cos (e~ +', e~ +j) = f 5-1/2' i - j  = + 1 mod 5 
I . -5  -1/2, i - j  = +2 mod 5 

shows that the vectors eli may be identified with the 
set of six vertex directions shown in Fig. 4. The 

i corresponding identification for the vectors e± is 
shown in Fig. 5. The choice of surrounding one of 
the vectors symmetrically by the other five was purely 
a matter of convention. Other conventions result if, 

5 6 2 3 

Fig. 4. The prciected basis vectors ell. 
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say, one of the basis vectors e' is reversed, thereby 
• i simultaneously reversing eli and e±. 

The condition (8) used in defining the subset of 
lattice points 5e(Xo) is easily generalized to apply to 
the present situation. The notation C(n) now rep- 
resents a six-dimensional hypercubic cell of 7]6 and 
l(Xo) is a three-dimensional hyperplane parallel to XII 
parametrized by Xo ~ X±. The construction of the set 
6e(Xo) suggests the general term hypercubic covering. 
The hyper~lane l(xo) is 'covered' by the hypercubic 
cells of 7/ in the sense that every point x ~ l(Xo) 
belongs to some cell of the covering and, conversely, 
that every cell in the covering contains some x ~ l(Xo). 
The set 5e(Xo) is then the set of all lattice points n of 
the cells that belong to the covering. The projection 
Pil[Se(Xo)] gives a particular realization of the icosahe- 
dral quasilattice: 

9°ll(xo) = int (x')e x e± xo . 
i = 1  i = 1  

For the interpretation of ~ll as the vertices of a rhom- 
bohedral space filling we refer to the work of Kramer 
& Ned (1984) where essentially the same construction 
was used. Here we merely note that the twenty 
different rhombohedra of the space filling (distin- 
guished by orientation as well as shape) are generated 
by the combinations of distinct triplets of vectors 
chosen from the set {e l , . . .  , e~}. 

Before we can proceed with our calculations it will 
be necessary to know something about the projection 
into X± of the hypercubic cell: 

C±=P±[C(o ) ]  

= x e ±  ~[0, 1), i =  1 , . . . , 6  . 
i = 1  

The last line defines a zonohedron [see, for example, 
Coxeter (1963)] generated by six vectors. As in this 

1 6 case, when the vectors e±, . . . ,  e± constitute a vertex 
set of the icosahedron, the zonohedron goes by the 
special name triacontahedron (see Fig. 6). Thus C± 
is a triacontahedron with edges taken from the set 
{ e l , . . . ,  e 6} and 'diameter' 

6 
1 ]e±-  ~ e~ = (1 + 51/2)1e~1. 

i = 2  

6 4 3 2 5 

1 

Fig. 5. The projected basis vectors e~.. 

A particularly useful representation of the triacon- 
tahedron is the decomposition into a disjoint union 
of twenty rhombohedra [a stereo image is given by 
Mackay (1982)]. These rhombohedra are the projec- 
tions of the twenty 3-cells of the 6-cube formed by 
taking distinct triplets of the six basis vectors. Two 
such projections of the analogous (but more familiar) 
2-cells of the 3-cube are shown in Fig. 7. If the 
rhombohedral volumes are 

• k v,jk = le~_ × e l .  e±l, (15) 

then 

/z(C±) = ~ Vijk=81/2(sin (27r/5) + sin (47r/5)) 
l<i<j<k<_6 

is the volume of the triacontahedron. 
The straightforward generalization of our earlier 

calculation of the density now gives us 

p = ~ d3xoOn(Xo) = tz(C±). 

If we wish to restore the rhombohedra to having unit 
edge length, we must rescale by the factor 8 -1/2 giving 

Pisv = sin (27r/5) + sin (47r/5) 

for the density of vertices of the icosahedral space 
filling. 

Analogous to (9), an equivalent definition of the 
set ~(Xo) sets out to determine the set of all lattice 
points n having projections P±(n) that fall inside a 
particular triacontahedron C±(xo). As in the one- 
dimensional case, it can also be shown that the set 
of these projections 6e±(Xo) fills C±(xo) uniformly (a 
proof is given in the Appendix). Crucial of course is 

i the fact that the vectors e± are linearly independent 
over the integers. The prescription, then, for comput- 
ing subpattern probabilities and the diffraction pat- 
tern is exactly the same as before. 

Fig. 6. The triacontahedron. 

\ / 
Fig. 7. Two ways of decomposing the projected 3-cube into the 

disjoint union of projected 2-cells. 
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Suppose we wish to know the probability that a 
vertex drawn at random from 311 has a complete set 
of neighbors at the twelve icosahedral displacements 

i +ell, i = 1 , . . . , 6 .  That is, we are interested in 
the probability p(Sr~') for the subpattern ~r/'= 
{O, +et , . . . ,  +e6}. Owing to the high degree of sym- 
metry, it is not difficult to show that the mutual 
intersection of the thirteen triacontahedra 

C ± ( ~ ) =  i'-] [ C . - P . ( k ) ]  

is itself a triacontahedron with diameter ( - 1 +  
51/2)leX, I. The probability, given as the ratio of 
volumes, is thus 

p( sO  = ( ( -  1 + 5 ' /2)/(1 + 51/2)) 3= ~-~. 

An unambiguous indicator of icosahedral sym- 
metry is the diffraction pattern of the quasilattice to 
which we now turn. As in the one-dimensional 
example, one considers projections of the reciprocal- 
lattice vectors. Formulas completely analogous to 
(13) are also valid in this higher-dimensional case: 

6 6 
i i  i i  

gll 2¢r ~ m ell , g±=2cr = m eL, 
i = 1  i = 1  

( m l , . . . ,  m6)ET/6. 

The counterpart of identity (12) now involves project- 
ing the inner product g . n  into the two three- 
dimensional subspaces XII and X±. If identical atoms 
are now placed at all the vertices of the space filling, 
the structure factor (up to a phase) is given by the 
integral 

S(glI)=[N/tz(C±)] ~ e-'g±'x~dax±, (16) 
C .  

where (71 is the triacontahedron or projected 6-cube. 
Whenever gll and g(I are related by an element of the 

o O .  
O o o O 

• O O 
o • O o 

. O O o 
O O ?io o • O . "  " . O  O . 

0 o o o  ° o 

0 ' 0 • 0 0 0 
o ° 0 0 °. o 

° 0 ° 0 0 

Oo o0 
° 0  ° 

Fig. 8. The fivefold slice of the icosahedral quasilattice diffraction 
pattern. The circles are centered on the peak positions and have 
areas proportional to the intensity. 

icosahedral group A(5), so are their counterparts g± 
and g~_. It then follows immediately from (16) that 
IS(g,)l--IS(gil)l since the integration region has the 
same symmetry. Icosahedral symmetry is also 
manifest if instead one considers a rotation a ~ A(5) 
of the quasilattice about some vertex nil = Pil(n) ~ 311• 
The effect of such a rotation on the set Aez is to 
rotate it (within X±) about the vertex n± = P±(n). 
Equivalently, the rotation a(Ae±) can be described by 
the redefinition C: = a(C±). Since C; and C~ differ 
only by a translation, the modulus of the structure 
factor is unchanged. 

An explicit evaluation of (16) is given in the Appen- 
dix. The slice of the diffraction pattern having gll • e~ = 
0 is shown in Fig. 8. As in the one-dimensional 
example, the actual pattern is dense with peaks and 
only the most intense are shown. 

4. Discussion 

The discovery by Shechtman, Blech, Gratias & Cahn 
(1984) of the remarkable alloy of manganese and 
aluminium that exhibits a point diffraction pattern 
with icosahedral symmetry has created considerable 
interest in the possibility of Penrose-tile-based crys- 
tallinity. The original proposal that a structure related 
to the icosahedral quasilattice could account for the 
observed diffraction pattern is due to Levine & 
Steinhardt (1984)• The diffraction pattem obtained 
by these authors is very similar to ours but differs in 
the actual intensity values. This is not surprising since 
the assumed atomic positions of the two approaches 
do not agree in detail. The construction of Levine & 
Steinhardt is intimately related to the notion of 
quasiperiodicity and is perhaps a natural way of 
understanding ideas related to 'deflation/inflation' 
and 'matching rules'. Whereas quasiperiodicity in the 
projection context is a consequence of icosahedral 
symmetry, we have seen that a calculational 
framework exists independent of this property. 

Note added: Recently, very similar ideas have been 
presented by Kalugin, Kitaev & Levitov (1985) and 
Duneau & Katz (1985). 

The author thanks Paul Heckbert of NYIT for 
providing Figs• 4-6 and Chris Henley for comments• 
A special debt of gratitude is owed to David 
Di Vincenzo for having spotted a significant error in 
an early version of (23). 

APPENDIX 

1. Uniform density of projections in C± 

Our argument consists in expressing the distribution 
as the product of three independent one-dimensional 
distributions. Also, for convenience, we consider the 
equivalent problem of showing uniformity of the 
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distribution inside the rhombohedron 

I(k~'k2'k3)={ ~ (k~+x~)e~ x '~[O' l ) ' i=l '2 '3}  

(k l, k 2, k 3) E 7/3, 

rather than the triacontahedron C±. We choose to 
express a general projected lattice point in terms of 
the same three basis vectors: 

6 3 
Z i i  i i  n e~ = ~ a ea, 

i = 1  i = 1  

where 
a l =  nl + /15-7.(n4+ n 6) 

a 2 = / 1 2 _ / 1 4 _  7 ( / 1 6 _ / 1 5 )  (17) 

a 3 =/13 _ n 6 _ ~.(n 4 -/15). 

Now, if P±(n) ~ I(k 1, k 2, k3), then 

U<_a~<U+I, i =  1,2,3. (18) 

Obviously the statement of uniformity hinges on a 
properly defined approach to the infinite volume limit 
(in Xll). Here we choose to take a sequence of larger 
and larger rhombohedra:  

Thus we consider only the subset of the quasilattice 
points Pil(n) ~ ~ ( N  1, N 2, N 3) and then take the limits 
N ~ ~ oo, i = 1, 2, 3. Expressing the projection of an 
arbitrary lattice point as 

6 3 

r. /1'eli= E " b ell, 
i = 1  i = 1  

then 
b I = n I + nS+ r - l ( n 4 +  116) 

b 2 = 112 - 114-t- .r-I(/16 - n 5) 

b 3 = n 3 _/16- t- 7-1(/14 - n 5) 

with now the conditions 

0 < b ~ < N ~, i = 1, 2, 3. (19) 

Combining inequalities (18) and (19) we have 

- k  i < b i - a ~ < N ~ - k ~, i = 1, 2, 3, 

where 

b 1 _ a 1 -- 51/2(/,14.t_/16) 

b 2 _ a 2 = 51/2(1,/6 _ n 5) 

b 3 _ 1:13 = 5 1 / 2 ( / 1 4 / 1 5 ) .  

We now propose to choose integers 

m' ~{int[5-1/2(-k')]+ 1,... ,int[5-~/2(N'-k')]}, 
i = 1 , 2 , 3 ,  (20) 

so that the equations 

. m I = / 1 4 _ i t _ / , 1 6  

m 2 = / 1 6  _ /15  

m 3 = / 1 4 / 1 5  

have a (unique) solution for integral n 4, n 5, n 6. This 
is the case provided m ~ + m 2 + m 3 is even. Thus there 
are four cases to consider: rn I m 2 and m 3 a r e  all 
even; exactly one of them is even. In each case, the 
distribution of  values r m ~ [which appears in (17)] 
is uniformly dense mod 1 in the limit N ~  oo. This 
is true also for the even and odd subsequences of 
(20) independently. From (17) we also see that the 

i integers n ,  i = 1, 2, 3, are uniquely determined if the 
a i are to fall inside the required range (18). 

In summary, we have exhibited a one-one 
correspondence between: (1) lattice points n 
with the properties P±(n) ~ I(k 1, k 2, k3) ,  PII(n) E 
~ ( N  ~, N 2, N 3) and (2) triplets of integers m' with 
even sum. The m i belong to independent sequences 
(20) and imply uniform distributions for each a ~ in 
the limit N ~ e o .  The independence of these one- 
dimensional distributions implies a uniform density 
in l(k l, k 2, k3) .  

2. Fourier transform of the triacontahedron 

An obvious approach to the evaluation of (16) is to 
decompose the integration region into 20 disjoint 
rhombohedra and add the contributions from each 
of these. Unfortunately, as this decomposition is not 
very symmetrical, this endeavor not only promises to 
be extremely tedious, but almost certainly would fail 
to deliver a formula wherein icosahedral symmetry 
was manifest. We therefore choose a different 
approach, beginning with the steps prior to (16). 

We use the fact that the icosahedral quasilattice 
may be viewed as a filling of space with rhombohedra 

i generated by basis vectors ell, e i, e~ (Kramer & Ned,  
1984). If rll(i,j , k) denotes the center-of-mass coordi- 
nate of the rhombohedron,  then 

S(gll) = Z Sl(i,j, k)S2(i,j, k), 
l<_i<j<k<-6 

where 

S,(i,j,k)= Z exp[igll.r,(i,j,k)] 
rll( i,j,k ) 

S2(i,j,k)= Z w(e,, ~j, Ek) 
ea  = : t : l  

(or = / , j , k )  

(21) 

The 'weight'  w ( ei, ej, e k ) in (21 ) represents the fraction 
of solid angle contributed by the rhombohedron with 
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i edges ell , e~, e~ to the vertex 

xll = rll(i,j, k)+½ ~ ~elT. 
a = i , j , k  

The six-dimensional analog of  identity (12) allows us 
to replace exp(igll, xll ) with exp (--igA. XA), where 

XA = rA(i,j, k)+½ E e~e~. (22) 
ct = i , j , k  

Clearly, rA(i,j, k) is identified with the center of mass 
of a rhombohedron in XA. 

Let us determine the distribution of points r.(i, j, k) 
inside CA(X0), the triacontahedron. At the expense of 
introducing an irrelevant overall phase (depending 
on x0), we assume the latter is centered on the origin: 

If all eight vertices (22) lie inside CA, then clearly 

rA(i , j ,k)egA(i , j ,k) ,  
where 

R A ( i , j , k ) = {  Y.~__,,,,,, x~e~llx~l<½, f l=l ,  m, n} 

is a rhombohedron and l, m, n are just the com- 
plementary indices, i.e. 

{ l , m , n } = { 1 , . . . , 6 } - { i , j , k } .  

To evaluate S~ we note that each rhombohedron 
with center of mass r.(i , j ,  k) can uniquely be associ- 
ated with the vertex 

r.(i , j ,  k ) -½ ~. e~L. 
a = i , j , k  

Thus, we can apply the notion of a 'subpattern' (a 
rhombohedron) rooted at this vertex. If the quasilat- 
tice has N points, the distribution (in (71) of these 
vertices is uniform with density N/I,e(CA) inside the 
region 

RA(i,j, k ) -  E e7 
a = i , j , k  

and zero elsewhere. Consequently, 

where 

S I ( i , j , k ) = [ N / ~ ( C A ) ]  ~ e-ig~'r-~d3rA 
R.~ ( i , j , k  ) 

=[N/Ix(C.)]vz,,,,, I-[ sin z~/z~, 
f l  = l , m , n  

z~ = ½gA- e~ 

and vt,,,,, is the volume of RA(i,j, k) given by (15). 
We now turn to $2, the sum over the vertices of 

the rhombohedron. Apart from orientation, the rhom- 
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i e j  ' k bohedron formed by the basis vectors e±, e± may 
have one of two shapes called 'prolate' and 'oblate'. 
To help distinguish between these cases we introduce 
the quantities 

% = sign (e~. e~), cr#k = O'ijO'jkO'ki" 

Owing to (14), there is an overall change in sign if 
we consider instead the analogous quantities defined 
for basis vectors in Xii. With the above definition, the 
c a s e s  or/j k = + 1  and trOk =--1 correspond to prolate 
and oblate rhombohedra (in X±), respectively. 

For the prolate rhombohedron, the two corners on 
the axis of symmetry subtend the fraction 1/20 of the 
solid angle while the remaining six corners subtend 
the fraction 3/20. For the oblate rhombohedron the 
corresponding fractions are 2 x 7/20 and 6 x 1/20. In 
both cases the vertices on the axis of symmetry (rela- 
tive to the center of mass) are given by 

e ijk 1 k i j A = ±~(trijeA + t~ke A d- OrkieA). 

Recalling that the weight w(ei, e:, ek) represents the 
fraction of solid angle in Xll , we find 

for tr0k = +1: 

S2(i,j, k)=(1 /20 )  8 ]-[ cos z, 
o t = i , j , k  

+ (7 /20 -1 /20 )  2 cos (½gA. e~ k) 

for trOk =--1:  

S2(i,j, k ) - ( 3 / 2 0 )  8 H cos z~ 
ot = i,j, k 

+ ( 1 / 2 0 -  3/20) 2 cos (½gA. e~k). 

With the help of trUk , these can be combined into a 
single formula: 

S2(i,j, k) 4 2 
= (~--~%k) I] COS z~ 

a = i , j , k  

_~ 1 2 (3+3ouk) cos (o':k +o~:, +~u:j). (23) 
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